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The paper is devoted to a theoretical analysis of nonlinear two-dimensional waves on 
the surface of a liquid film freely falling down a vertical plane. A bifurcation analysis 
of the wave regimes found in Part 1 of this work (Tsvelodub & Trifonov 1991)) and 
of the new wave families obtained here in Part 2, has been carried out. It is 
demonstrated that there is a great number of different steady-state travelling wave 
classes which are parameterized by wavenumber at a fixed Reynolds number for a 
given liquid. It is shown that some of them quantitatively agree with experimental 
results. The question of stability of various wave regimes with respect to two- 
dimensional infinitesimal disturbances is examined and it is shown that one 
particular wave family is found. The most amplified disturbances are evaluated. 

1. Introduction: governing equations and methods used in the stability 
investigation and in the bifurcation analysis 

A discussion of some basic theoretical and experimental results published 
previously is given in Part 1 of this work (Trifonov & Tsvelodub 1991). Here we state 
only the governing equations, and review briefly the numerical procedure for finding 
steady-state travelling waves and the method of the stability investigation given in 
more detail in Part 1, and discuss some main results of Part 1. 

We consider a two-dimensional flow of a viscous incompressible liquid on a vertical 
plane. A schematic of the flow and the coordinate system are shown on figure 1. We 
shall consider only long-wave disturbances in terms of the parameter 8 = h,/L < 1. 
Here h, is the mean film thickness and L is a characteristic scale of length in the 
x-direction. For the range of Reynolds numbers under consideration 

E 4 Re 5 1/e (Re = qo/v ,  

where v is kinematic viscosity and qo is the mean flow rate in a wavy film), after 
neglecting terms smaller than O(s) ,  the Navier-Stokes equations and boundary 
conditions are substantially simplified : 

au au au aa3h a2u 
-+u-+ 2" = g + - - + v - - ,  I at ax ay  pax3 ay2 

au av -+- = 0, 
ax ay 

u = v = 0, y = 0 ;  -= 0, y = h(x,t). 
au 

aY 
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FIGURE 1.  Schematic representation of a vertical falling liquid film. 

Here g is the acceleration due to gravity, CT is the coefficient of surface tension and 
p is liquid density. 

In deriving (1.1) we retain the term for the capillary pressure. It is correct if the 
film number Fi = ( ~ / p ) ~ / g v *  - Re5/sa, which is the case in most experiments. 

In  spite of the assumptions used it is difficult to find wavy solutions of (1.1) and 
therefore the self-similarity velocity profile assumption was also used : 

U ( X ,  Y, t )  = U(z ,  t )  ( y / h ( z ,  t ) - ~ ’ / 2 h ’ ( z ,  t ) ) .  (1.2) 

For long waves this assumption is reasonable but it is extremely difficult to 
evaluate its correctness mathematically. However, the experimental results and 
some direct numerical simulations show that this assumption is valid for the values 
of Reynolds numbers under consideration. The physical correctness of (1 .2)  may be 
proved by comparing the solutions of the simplified system with the experimental 
results. 

Substituting the profile (1.2) into (1.1) and integrating over the y-direction from 
0 to h(x, t )  gives us the following system of equations in dimensionless form: 

q* a3h* 
= Fh*-Z-+fh*-  

h*’ ax*3 

ah* aq* -+-= 0. 
at* ax* 

Here 

(1.3a) 

(1.3b) 

(q  is the flow rate of the film liquid). 
To find periodic nonlinear steady-state travelling solutions of (1.3), h* = h*(E), 

q* = q* ( [ ) ,  E = x-ct ( c  is the phase velocity), it is convenient to use the wavelength- 
averaged thickness and flow rate as scales of h and q respectively. This choice of scales 
is more suitable for comparing the calculated and experimental results. As a rule, the 
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Reynolds number based on the mean liquid flow rate is a natural and well-controlled 
parameter for experiments on waves travelling down a liquid film and the results are 
often represented as functions of this parameter. For such a choice of scales the 
relation between h, and qo is not known beforehand. Therefore, in (1.3) we may fix 
only one of the two parameters, F or 2. The other one may be determined from the 
solution. Here the parameter 2 will be the one that is fixed. 

Now the solution of (1.3) related to Nusselt smooth flow is 

h * = l ,  q * = l ,  F = Z  

and a solution exists for any value of 2. To investigate its stability with respect to 
infinitesimal disturbances, 

h* = l+h’, q* = l+q’ ,  (h’,q’) - exp[ia(z*-clt*)], 

the system (1.3) is linearized with respect to h’, q’ and it is not difficult to obtain the 
resolving condition for the complex phase velocity c, as a function of real parameters 
a (wavenumber) and 2. If Im (cl) > 0 the disturbance is amplified and if Im (c,) < 0 
it disappears. The analysis carried out in Part 1 showed that for any Z there is a 
neutral wavenumber a, = 1 such that all disturbances with a < a, are unstable and 
those with a > a, disappear. The phase velocity of a neutral disturbance c, is equal 
to 3. 

Steady-state travelling periodic solutions of (1.3) with finite amplitude are found 
numerically. The details of the algorithm are given in Part 1 and here we only review 
briefly the method. For solutions q(E), h(E), 6 = x-ct (the asterisk being omitted) 
equation (1.3b) becomes q(E) = I+c(h(E)-l) and now we have only to obtain the 
ordinary differential equation for the unknowns c ,F ,  h(5). 

The periodic wave with wavenumber a is presented as a Fourier series: 

- m 

h = Hn exp [ianfl, H, = H-,. 
n--m 

The bar denotes complex conjugation and, due to the norm conditions, H ,  = 1. 
Taking into account the first &V harmonics in the set (1 .a), and substituting these 

into the equation we obtain a system of N + 1  complex equations for the real 
unknowns F ,  c andNcomplex (H*,, ..., HkNI,). The pseudospectral method and the 
fast Fourier transformation procedure were used to calculate the harmonics of 
nonlinear terms. 

Since (1 .3)  is invariant to the changes t+t+C1, x+x+C,, where C ,  and C, are 
constants, the origin of the coordinates was usually chosen such that Im(Hl) = 0. 

Thus the system of algebraic equations is completed and the Newton-Kantorovich 
method was used to solve it numerically. To reduce the set (1.4) the number of 
harmonics was taken so as to satisfy the relation 

IHN/zl/ SUP IHnI < 
Inl<NlZ 

For this purpose the number N had to be varied, depending on the values of a and 
2, over the range from 16 to 128. If this relation was satisfied, then the increase in 
the number of harmonics under consideration did not influence the results of the 
calculations. Thus, for example, doubling N gave us, in general, variations of the 
phase velocity c of less than 1 YO, and similarly for the film thickness h(6) a t  each 
point & = 2 x i / ( d ) ,  i = 1, ..., N .  
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The numerical algorithm is given in more detail in Part 1. Here we only emphasize 
that the Newton-Kantorovich method is very effective for solving the nonlinear 
equations. The main difficulty in this method is to determine an initial approximation 
that is close enough to the solution. Using the analytically obtained periodic steady- 
state travelling solutions of (1.3) with wavenumbers close to the neutral ones as an 
initial approximation and proceeding with a small enough step in the parameters a, 
2 into the region of linear instability, the steady-state travelling solutions for all 
values of 2 and a under consideration were found successfully in Part 1. For a given 
value of 2 these solutions are parameterized by their wavenumber a, 0 < a < 1, and 
this wave family is called the first family. A comparison with the experiments of 
Kapitza & Kapitza (1949) and Alekseenko, Nakoryakov & Pokusaev (1985) 
demonstrated good quantitative agreement between this family of waves and the 
corresponding ‘periodic ’ regimes in the experiments. 

Here the initial approximations for the Newton-Kantorovich method are 
constructed from the results of the stability analysis. In Part 1 this analysis was 
carried out for various waves of the first family to determine which waves could be 
found and so which waves ought to be observed in experiments. It was shown that 
waves of the first family were stable with respect to two-dimensional disturbances 
only for narrow range of wavenumber values and if the values of the Reynolds 
number were not large. 

Thus, the purpose of this article is to carry out a bifurcation analysis of the first- 
family waves and to obtain the nonlinear waves of the other types. 

The bifurcation analysis is based on the method of stability investigation which is 
given in detail in Part 1 ; here we give only main features. 

Let h, ( f l ) ,  q, ( f l )  be a periodic solution of (1.3) with wavenumber a. Substituting 
h = h, ( f )  +Id([, t ) ,  q = qo (5) + q’(fl, t )  into (1.3) and linearizing it we obtain a system 
of partial differential equations for studying the stability of the steady-state solution 

Since the variable t is not explicitly incorporated into this system the solution may 
ho ( E L  QO(5). 

be represented as 
h = e+h 1 (61, q = e-%, (0 (1.5) 

Here the primes denoting the disturbance values are omitted. Then the system of 
ordinary linear differential equations with periodic coefficients for h,, q is 

where f, is the matrix operator given in Part 1.  
Since the disturbances are initially limited for all values of f l ,  solutions of (1.6) 

which are also limited for all fl  are of particular interest here. It follows from 
Floquet’s theorem that such solutions are of the form 

hl ( f l )  = ~ ( f l )  eiaQ5, q1 = @ ( E )  eiaQ5, (1.7) 

where 97, @ are periodic functions of the same period as h, ( f l ) ,  qo ( f l ) ,  and Q is a real 
parameter. Substituting (1 .7)  into (1.6) and Fourier transforming we obtain a linear 
algebraic problem to determine the eigenvalues y .  

Thus the investigation of the stability of periodic steady-state travelling wave 
solutions h, (0, qo (6)  with respect to infinitesimal two-dimensional disturbances is 
reduced to studying the spectrum of y for different values Q. The wave is stable if for 
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any Q all y have Re(y) 2 0. If for some value of Q even just one eigenvalue y has 
Re ( y )  < 0 then the solution under consideration is unstable. We emphasize here that 
a few unstable modes may exist for a given value of Q and a few eigenvalues yi may 
have Re(ya) < 0, i = 1,2 .... 

It follows from (1.7) that it is sufficient to consider Q within any interval of unit 
length, for example [ -0.5; 0.51. In Part 1 i t  was shown that y(Q) = r( - Q )  and it  was 
sufficient to consider Q within interval 0 d Q < 0.5. 

The results obtained for Q = 0 show the stability with respect to a special but 
important class of disturbances: ones that the same period as the wave flow under 
consideration. I n  this case one of the solutions of (1.6), (1.7) is readily found 
analytically : 

This result is a consequence of the Andronov-Vitt theorem concerning the presence 
of a t  least one zero Lyapunov index for a closed trajectory. To find the other y at  
Q = 0 the problem was solved numerically like in the general case Q + 0. It is 
important to note that besides (1.8) the stability calculations show the existence of 
the second eigenvalue y = 0 at  Q = 0 for all nonlinear waves under consideration. 

As a rule (see Part l), disturbances with small values of Q are most dangerous when 
the nonlinear solution (q, ( E ) ,  h, (5)) under consideration is stable with respect to 
disturbances of the same period (Q = 0). Introducing the set of fast and slow 
variables 

6, = 6, 6, = E E ,  tn = P t ,  n = 1,2, E =  Q 

and expanding the unknowns in (1.3) in powers of the small parameter 

q = qo + Eql + q, + . . ., h+ hd + Ehl + s2 h, + . . . , 
the analytic method was used to investigate the wave stability with respect to such 
disturbances. 

A non-trivial solution of the system to the first power E is proportional to solution 
(1.8): 

where A is a function of the slow variables. 

in E it follows that A - exp [ - qt, + if,] and for a = Re (7) we have (see Part 1) 
From the resolution condition of the non-homogeneous system to the third power 

a2= -Rz. 
The value of R, was determined numerically and was a function of (q, ( E ) ,  h, (6)). 

If R, < 0, i t  is obvious that A increases with time, and the solution q,, h, is 
unstable. If R, > 0 , ~  has an imaginary value. In  this case, it is necessary to consider 
one more approximation. 

Substituting A - exp [ - 7, t ,  - 7tl + it,] into the linear part of the resolution 
condition at  the fourth approximation we arrive at a linear equation to determine 7,. 
Substituting for 7 both solutions of the previous approximation we have two values 
of 7, : 7; and 7;. If Re (7:) and Re (7;) are greater than zero, the initial solution is 
stable, and if at least one of these real parts is less than zero, it is unstable. A more 
detailed account of the above-stated method is presented in Part 1. 
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From (1.5), (1.7) it follows that if at some value of Q a real part of some eigenvalue 
vanishes then a new wave regime branches from an initial one. Thereby either non- 
stationary (if Im ( y )  4 0) or stationary (if Im ( y )  = 0) regimes can be generated. If Q 
is an irrational number, a two-periodic regime in the 6-direction is generated. 

Thus, in the space of parameters Z,a, Q, stationary regimes bifurcate at  points 
lying on the surfaces 

(1.10) 

The eigenfunction of the neutral disturbance is used to construct the initial 
approximation for the Newton-Kantorovich method to obtain a new nonlinear 
solution in the neighbourhood of the bifurcation point. The numerical algorithm to 
calculate the spectrum of eigenvalues y was presented in more detail in Part 1. Here 
we would only like to emphasize that the procedure for investigating the stability 
and bifurcations and that for calculating the nonlinear solution supplement each 
other and the agreement between their results ensures the accuracy of the computer 
algorithms. 

?(a, 2, Q )  = 0. 

2. Bifurcation lines for the first-family waves 
Using the methods and equations described in § 1 ,  in Part 1 the nonlinear waves 

of the first family were found numerically and their stability determined for a wide 
range of Reynolds number Re and right up to the smallest values of wavenumber a. 
The branching from smooth flow at the line a = 1 is of ‘soft ’ type and waves of this 
family have a sine-like thickness profile up to a x 0.55. In the limit a --f 0 the wave 
profile transforms into a series of solitary waves - ‘negative’ solitons. Here and 
below the word ‘soliton’ is an abbreviation for ‘solitary wave’ and there are no 
features of solitons in the usual context for solutions of (1.3). A comparison with the 
experiments of Kapitza & Kapitza (1949), Alekseenko et al. (1985) and Nakoryakov, 
Pokusaev & Alekseenko (1981) demonstrated good quantitative agreement between 
some waves of this family and experimentally observed ‘periodic ’ regimes. Wave 
stability calculations with respect to two-dimensional disturbances had shown that 
the long waves of this family were unstable with respect to disturbances with the 
same period as that of the wave, which is why these waves were not observed in the 
experiments. 

Using results from Part 1 a bifurcation analysis of first-family waves will be carried 
out in this article and new types of waves will be found. 

The results of the first-family-wave stability analysis at 2 = 10 are given in figure 
2 as an example. For this value of 2 the region of waves stable with respect to 
disturbances of the same period (with Q = 0) is 0.516 = a, < a < 1.  In figure 2 the 
point a, is the intersection of curves 6 and 7. Note that in the region of waves stable 
with respect to disturbances of the same period ( Q  = 0) there are no more than two 
unstable modes of disturbances with small values of Q. The eigenvalues y of such 
disturbances vanish with Q +. 0 and y = 0 is double valued at  Q = 0, as was discussed 
in $1. 

In  the small region between line a = 1 and curve 1 in figure 2 there are two 
eigenvalues yt which have Re (yJ < 0, i = 1,2.  As a consequence there are two 
unstable modes for the given values of a and Q i 0. On crossing curve 1 one of these 
unstable modes becomes stable. The second mode becomes stable after crossing curve 
2. In the region between curves 2 and 4 shown hatched in figure 2 all disturbances 
are stable. The region of waves which are stable with respect to all possible 
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a 
0.7 

0.6 

0.5 
0.4 

Q 
0 0.2 

FIQURE 2. Bifurcation lines for solutions of the first family when 2 = 10. On lines 1-3 y = 0 and 
stationary regimes appear here. On lines 4-7 Re (y )  = 0 and nonstationary regimes bifurcate here. 

disturbances is narrower (0.772 < a < 0.802) than that of disturbances with Q = 0, 
which in figure 2, is the intersection of lines 2 and 4 and the axis Q = 0. On crossing 
curve 4 the unstable mode appears again. Also,' a stability change of some modes 
occurs while crossing lines 3,&7 in succession. 

On lines 1-7 in figure 2 the real parts of some eigenvalues vanish. On lines 1-3 the 
imaginary parts of the corresponding eigenvalues also vanish, which means that lines 
1-3 belong to the surfaces (1.10) and the new steady-state travelling regimes branch 
from these lines. On lines 4-7 Im (7) =!= 0 and the non-stationary regimes bifurcate 
here. 

Analogous bifurcation lines are numerically determined for other values of 2 : with 
decreasing 2 they shift towards the region of lower a values. If we number the 
bifurcation surfaces in the space (a,Q,Z) in accordand with the values of their 
characteristic wavenumbers then we may say that lines 1-3 in figure 2 the sections 
of the first three surfaceB (1.10) for the 2 = 10 plane. 

3. New families of stationary waves and investigation of their stability 
The calculations show that there exist qany  bifurcation surfaces (1.10) for the 

first-family waves (e.g. see figure 2). As will be shown, the most interesting solutions 
in terms of comparison with experiments Eifurcate from the first surface (1.10) 
possessing the highest wavenumbers , 

a = E*l(Z, &I. (3.1) 

I n  figure 3, lines 1-3 correspond to the values anew = (2, &) when Q = t ,  g, a, 
respectively. New stationary periodic solutions of system (1.3) with wavenumbers 
a = anew (see 1.10) bifurcate along these lines. 

Figure 4 makes it possible to imagine more clearly the branching character of the 
new solutions in the neighbourhood of the bifurcation points. The first-harmonic 
amplitudes of the wave versus a with increasing distance from the bifurcation area 
are shown here. Figures 4(a) ,  4 (b) ,  and 4(c) show 2-1 = 0.1, 1.6 and 0.6, respectively. 
For figure 4(a,  b )  the bifurcation points are on curve 1 of figure 3, for figure 4(c) i t  is 
on curve 2 of figure 3. 

FLM 244 6 
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FIGURE 3. New stationary periodic solutions bifurcate along lines 1-3 from the first family. The 
character of stability with respect to disturbances of the same periodicity changes on reaching line 
4. Lines 5-8, 13 are the return lines. Lines 9-12 correspond to Hopf bifurcation. 

3%i'y' , ,,,, >:;j-,-,,) , (b) 

0.4 

0.46 o1 0.52 0.39 a 0.4 

FIGURE 4. The first-harmonic amplitudes of the wave versus a with increasing distance from the 
bifurcation area. (a) 2-' = 0.1, the bifurcation point is on curve 1, figure 3 ;  ( b )  2-' = 1.6, the 
bifurcation point is on curve 1, figure 3; (c) 2-' = 0.6, the bifurcation point is on curve 2, figure 3. 
( d )  The global extension of some local bifurcation curves a t  0.4 < 2-' < 0.68; ( e )  the global 
extension of some local bifurcation curves a t  0.75 < 2-' < 1.33 (the numbers on the a-axis 
correspond to  the curves in figure 3). 

The bifurcation on curve 1 is one-sided. For every value of 2 (2-1 < 2) the solution 
first goes to  higher a (see figure 4a, b )  and then, after having reached the return line, 
it shifts towards the region of lower u. Near the bifurcation point this family is 
unstable with respect to disturbances of the same periodicity (& = 0). The dashed 
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parts of the curves in figure 4 correspond to such unstable solutions. The character 
of stability with respect to such disturbances changes on reaching line 4 of figure 3. It 
should be noted that line 4 in figure 3 does not coincide, at  least for 2-' 2 1, with the 
return line (the latter is not shown in figure 3), as i t  follows from figure 4 ( b ) .  

On curve 2 of figure 3 the bifurcation is two-sided (see figure 4c). This case is 
characteristic of the other curves, including curve 3 in figure 3, corresponding to 
bifurcations from the surfaces (1.10) at rational numbers of & =I= a. For every value 
of Z(2-' < 2) both the solutions branching from curve 2 (figure 3) towards the region 
of lower a and towards the region of higher a (see figure 4c) are unstable in the 
neighbourhood of the bifurcation point with respect to disturbances of the same 
periodicity (& = 0). The solutions branched towards the region of higher a, and after 
reaching the return lines 5 or 6 (figure 3) go into the region of lower a. After returning 
from line 5 these solutions become stable with respect to disturbances of the same 
periodicity (& = 0). 

The branching character of the solutions generated from curve 3 (figure 3) is 
analogous to that of the solutions generated from curve 2 (figure 3). The bifurcation 
is two-sided and the branch going to higher a then returns, after having reached lines 
7 or 8, towards the region of lower a. On line 7 these solutions become stable with 
respect to disturbances of the same periodicity (& = 0). 

Bunov, Demekhin & Shkadov (1984), when considering some period-doubling 
bifurcations, presented the basic solution of the first family analytically as a sum of 
the first two harmonics. The bifurcation points were found by determining real roots 
of a quadratic equation. Thereby, in the notation used, the bifurcation equation did 
not have real roots when 2-' 2 1 since the basic solution did not bifurcate (i.e. line 
I in figure 3 should terminate when 2-' x 1 ) .  The discrepancy between these results 
and our calculated data is likely to be related to the fact that over this range of 
parameters the basic solution cannot be accurately represented by two harmonics. 

The new solutions, obtained in the neighbourhood of curves 1-3 (figure 3) were 
extended throughout the parameter region under consideration, i.e. a 2 0.15, 
0.5 < 2 < 100. The calculations show that there is a complex interconnection 
between these solutions. They form many-folded and many-sheeted surfaces on the 
plane of parameters a, 2-'. 

The calculations show that all branches of solutions appearing on lines I ,  2, 3 
(figure 3) continue to the smallest values of a at all fixed values of 2. The limits of 
these branches as a+O are the various solitary waves. For some of these branches 
there are regions of 2 where moving along a forms a fold. Thus the solutions 
branching from line 1 for 0.4 < 2-' < 0.68, having reached the upper part of line 6 
return to line 5 and move again to the region of small a. The solution branch 
generated from line 2 towards the region of higher a at 0.75 < 2-1 < 1.33 has an 
analogous fold between line 7 and the upper part of line 8. These branches of 
solutions become stable with respect to disturbances with & = 0 on lines 4 , 5 , 7  as was 
discussed above. The new stability loss with respect to such disturbances occurs on 
lines 10, 11, 12, respectively. 

Moving along 2 a t  a fixed value of a allows us to see a complex interconnection 
between these branches of solutions. Thus moving along the arbitrary line a = const 
situated above the lower part of curve 6 (figure 3) shows that the solutions branching 
from curve 1 at small values 2-' transform into ones branching from curve 1 a t  high 
values of 27'. In  the region between line 5 and the upper part of line 6 we have the 
above-mentioned fold (increasing a and 2 after having passed this fold the solution 
may again reach curve 1 (figure 3)). If 2-' varies along the line a = const which does 

6-2 
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5/h  
F~arrrt~ 5. Some profiles of the wave thickness for the different families. Here a = 0.19,Z-' = 2 :  (a) 
solution bifurcates along line 1 ,  figure 3; ( b )  solution bifurcates along line 2, figure 3, towards higher 
wavenumber; (c) solution bifurcates along line 3, figure 3, towards higher wavenumber; ( d )  
solution bifurcates along line anew = b*l (2,;) (see (3.1)). 

not intersect curve 6, then curve 5, as earlier, is the return line; however, now the 
solution extends only up to  curve 2. Thus, the solution generated by curve 1 turned 
out to transform into one of two bifurcation solutions branching from the first family 
with Q = 4 along curve 2, namely, into the solution which branches towards higher 
a (see figure 4c).  If the solutions branching from curve 2 towards higher a a t  
2-' < 0.68, after having turned from line 6 (figure 3), are continued with increasing 
a and 2-' without the second intersecting of curve 6 then the curve 1 may be reached 
again. Thus, for all the points on curve 2 (figure 3) the solution bifurcating towards 
higher a merges, though in a complicated way, with that bifurcating from curve 1.  

In the region between the lower part of curve 6, the part of curve 5 where 
2-' > 0.68, the lower part of curve 8 and the part of curve 7 where 2-' > 1.33 we 
have three different branches of solutions at  a given value of 2-' which merge one 
with another while 2-' varies. 

In the region below curve 3 (figure 3) we have at least five different branches (two 
branches appear on curve 3 and three branches continue in this region from lines 1, 
2) and here the merging of these branches one with another, while 2-' varies, occurs 
too. 

Figures 4 ( d )  and 4 ( e )  make it possible to understand more clearly the description 
of figure 3 given above. They show the qualitative behaviour of some branches with 
increasing distance from the bifurcation area. Figure 4 ( d )  shows the behaviour of 
these branches at  0.4 < 2-' < 0.68 and figure 4(c)  shows that a t  0.75 < 2-' < 1.33. 
Here the numbers on the a-axis correspond to the numbers on curves in figure 3. 

Thus, even for the first surface (1.10) the branching along the lines corresponding 
to the first maximum rational values of Q belonging to the interval [0 ; 0.51 results in 
the formation of many new steady-state travelling solutions which are interconnected 
in a rather complicated manner. With decreasing a this process becomes even more 
complicated, since this is accompanied by concentration of bifurcation lines (as is 
seen from the comparison between curves 1, 2 and curves 2, 3 in figure 3) and the 
number of solutions quickly increases. Besides, for small a other surfaces (1.10) begin 
to manifest themselves and the first wave family generates its own set of solutions 
on each of them. 

The wave film thickness profiles for some of the types of solutions considered above 
are shown in figures 5 7 .  In figure 5 the parameters for all regimes are a = 0.19, 
2-' = 0.2. All solutions in figure 5 were obtained by continuously moving along a 
from the corresponding bifurcation point at a fixed value of 2. The solution 
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0.1, I 0.11 I 

h- 1 
0 

-0.1 

0.2 
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- 0.3 

FIGURE 6. Some profiles of the wave thickness for the different families: (a )  a = 0.2,Z-' = 0.6. The 
solution bifurcates along line 2, figure 3, into the region of lower wavenumbers (see figure 4c). ( b ,  
c) a = 0.2,Z = 10. The solutions bifurcate from the second surface (1.10) along line 2, figure 2, for 
Q = t and respectively. ( d )  a = 0.2,Z = 10. The solution bifurcates from the third surface (1.10) 
along line 3, figure 2, for Q = 4. 

corresponding to figure 5 (a )  bifurcates along line 1 (figure 3) ; that corresponding to 
figure 5(b) bifurcates along line 2 (figure 3) towards higher wavenumber; that 
corresponding to figure 5(c) represents bifurcation from line 3 also towards higher 
wavenumbers ; the solution corresponding to figure 5 ( d )  represents the bifurcation 
from line a,,, = ta*l (2,i) (see (3.1)). 

Though the profiles displayed in figure 5 have some qualitative similarity and 
correspond to the long waves observed in the experiments there is a rather significant 
quantitative diflerence between the waves. 

Figure 6 (a) shows the wave profile of the solution bifurcated from line 2 (figure 3) 
into the region of lower wavenumbers (see figure 4 b )  for the parameters a = 0.2, 
2-' = 0.6. 

Some wave profiles of families bifurcating from the second surface (1.10) along line 
2 (figure 2) for Q = are displayed in figures 6 ( b )  and 6(c), respectively, and 
ones bifurcating from the third surface (1.10) along line 3 (figure 2) for Q = + are 
shown in figure 6 ( d ) .  For all these profiles, a = 0.2 and 2 = 10. This wavenumber is 
rather close to zero and with further decrease in a,  2 being fixed, the profiles change 
slightly, mainly a part of practically horizontal section only is growing. Therefore, it  
might be expected that as a --f 0 these solutions transform into negative solitons with 
two or three valleys, respectively. 

Although a comprehensive numerical analysis of all the solutions is impossible, it 
may be stated, with some caution, that solutions distinguished in a stability sense, 
i.e. having different stability properties, are generated on the first bifurcation surface 
(1.10). Their range of wavenumbers that are stable to disturbances with Q = 0 is 
rather wide. The families, bifurcating from other surfaces ( l . l O ) ,  as was shown by 
selected calculations, are unstable with respect to disturbances having the same 
period for all values of a and 2 under consideration. 

The rather complicated hierarchy of the above-mentioned solutions, bifurcating 
from the first family, is not complete, since for them there also exists the surface of 
the type (1.10) over which some of eigenvalues y pass through zero and new solutions 
appear. Figure 7 shows the wave profile of one of the families generated due to a 

and 
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FIGURE 7. The wave profile of a solution which bifurcated from the second family is shown: 
a = 0.2. 2 = 10. 

secondary bifurcation. As in figure 6, here a = 0.2, 2 = 10. This solution is likely to 
have a limit as a double-humped soliton. Multi-humped-soliton solutions for the 
equation describing the disturbances on a film when Re 5 1 were obtained by Pumir, 
Manneville & Pomeau (1983). It follows from the above that further bifurcations of 
the solutions that appear are also available. 

Stationary waves divide the area of all periodic solutions into regions behaving in 
a different manner. The structure of stationary solutions of (1.3) has been shown to 
be extremely complicated, therefore it is obvious that without this information the 
evolution of periodic disturbances is impossible to investigate in detail, since for fixed 
values of a and 2 slight variation in the initial data will result in a significant 
difference in the disturbance evolution. It is also obvious that the presence of a high 
number of unstable stationary solutions for sufficiently small a will lead to, with high 
probability, a stochastic behaviour of disturbances for every 2 (or, correspondingly, 
for every Re).  The stochastic behaviour of some disturbances for an equation valid 
for Re 5 1 was demonstrated by Shlang & Sivashinsky (1982) and Chang & Chen 
(1986). 

4. Strongly nonlinear waves of the second type, their stability and 
comparison with experiments 

As was shown in Q 3, solutions exhibiting different stability properties bifurcate 
from the first surface (1 .lo). With rational Q = p / r ,  different one-parameter families 
of the waves bifurcate from the first family on this surface at a fixed value of 2 and, 
as was shown in $3, they are interconnected and form a many-folded and many- 
sheeted surface on the (a, 2-')-plane (see figure 3). 

Waves stable to disturbances of the same period ( Q  = 0) are useful in terms of 
experimental realization. These solutions, as the calculated results show, behave as 
if they were on the upper sheet of the surface (figure 3). This sheet represents a 
continuous extension in a and 2-1 of the solution bifurcating from line 1 (figure 3) at 
small 2-l. Thereby, in this case it is necessary to bypass lines 4, 5,  7, . . . . Further, 
taking into account that this definition is restricted, the solutions lying on the upper 
sheet will be called the second wave family. This second family differs from the first 
wave family in that it is not a one-parameter family at  all values of 2, owing to 
existence of folds (lines 4,5,7, . .., in figure 3). 

The definition of the second wave family is difficult : figures 8-13 make it more 
clear. The characteristics of waves belonging to the second family are shown on these 
figures by solid parts of lines. The broken lines correspond to solutions which are 
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FIGURE 9. Phase velocity vs. 2-' for the second-family waves: 
curve 1 ,  a = 0.5; 2, a = 0.35; 3, a = 0.2. 
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FIGURE 10. Relation between the dimensional mean thickness and the Nusselt thickness (see 
Part 1, (2.11 e)) us. 2-' for the second-family waves: curve 1,  a = 0.5; 2, a = 0.35; 3, a = 0.2. 

unstable with respect to disturbances with & = O  and, in accordance with the 
definition, such solutions are not waves of the second family. 

Figures %lo display the basic characteristics (amplitude, phase velocity and 
( F / Z ) $  versus 2-' for three values of the wavenumber. Line 1 is for a = 0.5 (the 
boundary point between the dotted and solid lines is on curve 4 in figure 3), line 2 
is for a = 0.35 (the broken parts of these curves are connected with the fold between 
lines 5 and 6 in figure 3), and line 3 is for a = 0.2. 

For every a value, as seen from figure 3, there exists a Z , ,  at which the solutions 
intersect lines 4,5,7. .  . and then fall into the fold (as in the case with a = 0.35 in 
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FIGURE 11.  Amplitude 'us. a for the second-family waves : curve I ,  2-l = 0.2 ; 2, 2-I = 1 .  
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FIGURE 13. Relation between the dimensional mean thickness and the Nusselt thickness vs. a 
for the second-family waves: curve 1 ,  2-' = 0.2; 2, 2-' = 1 .  

figures 8-10), being thereby unstable, or merges with the waves belonging to the first 
family (a = 0.5, figures 8-10). When a = 0.35 the solutions, having passed through 
the fold, again become stable to disturbances with Q = 0. 

Analogous dependence on the wavenumber CL for 2-' = 0.2 (line 1) and 2-1 = 1 
(lines 2a, 6 )  are shown in figures 11-13. 

When 2-' = 0.2 the solution bifurcates along line 1 (figure 3) from the wave 
belonging to the first family and becomes stable to disturbances with Q = 0 on line 
4 (figure 3).  

When 2-1 = 1, the solution bifurcates from line 1 (figure 3) (left-hand broken line 
2 a  in figures 11-13): one becomes stable on line 4, and then loses stability again on 
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v ~ 

FIGURE 14. Comparison of theoretical (-) and experimental (---) thickness profiles for a 
water-glycerine film: c, = 320 mm/s, c, = 318 mm/s. 

v 

FIGURE 15. Comparison of theoretical (-) and experimental (---) thickness profiles for a 
water-glycerin film: c, = 270 mm/s; c, = 262 mm/s. 

line 10 (figure 3) ;  one goes to the other surface sheet in figure 3 (the right-hand 
broken line 2a in figures 11-13). The solution branching from line 2 in figure 3 (first 
broken portion of line 2 b  in figures 11-13) becomes stable on line 5 in figure 3 with 
respect to disturbance with Q = 0 and then goes to the region of small a. The fold on 
lines 7 and 8 (figure 3) is shown by the second broken portion of line on curve 2 b  
(figures 11-13). 

With a decrease in a, the values of A ,  c, F / Z  behave in a rather complicated 
manner, in contrast to  that for waves belonging to the first family (see Part 1) .  There 
are some oscillations of the relationships shown in figures 11-13. 

Here it should be noted that though the relationships shown in figures 11-13 
extend to a x 0. I ,  the tendency of F / Z  to unity does not manifest itself, the thickness 
profiles for such a and 2 being close to solitary waves (for solitary wave i t  must be 
that F = Z as follows from (3.3) of Part 1 : 

F = Z ( l / h )  (1+c(h([)-1))/hZd[ L 
when A+ co). 

This circumstance is in good agreement with the experimental results obtained by 
Alekseenko et al. (1985), Nakoryakov et al. (1981) where, with decreasing frequency 
of external pulsations, the amplitudes of waves close in form to solitons increased 
continuously. 

Figures 14 and 15 show a comparison between the film thickness profiles 
experimentally obtained by Nakoryakov et al. (1981) (dashed-dotted line) and the 
calculated profiles of waves belonging to  the second family (solid line) for a 
water-glycerin film with v = 4.9 x lo-' m2/s, a l p  = 59 x lo-' m3/s2, Re = 7.2. In  
figure 14, h = 34.3 mm, the phase velocity c, = 320 mm/s in the experiment, and 
c, = 318 mm/s in the calculations. In  figure 15, h = 18.5 mm, c, = 262 mm/s. 
c, = 270 mm/s. The dimensionless parameters are 2-' x 1 ,  a w 0.17 in figure 14, and 
2-' w 1, a = 0.31 in figure 15. It is seen that these values are in good quantitative 
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FIGURE 16. Comparison of theoretical (-) and experimental (---) thickness profiles for a 

water film : c, = 232 mm/s ; c, = 260 mm/s. 
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FIGUFLE 17. Wave velocity vs. amplitude. Comparison of the relationships obtained from 
experiment (-) and from the theory (points). The parameters are given in the text. 

0'  

agreement. Figure 16 shows an analogous comparison for water (Y = 1.03 x m2/s, 
u / p  = 72.9 x m3/s2, Re = 0.8). Here h = 36.8 mm, c, = 260 mm/s, c, = 
232 mm/s (the experiment done by Alekseenko 1979). The dimensionless variables 
are a z 0.13, 2-1 z 0.95. In  this case the experimental and calculated results are in 
satisfactory agreement. 

Here it is necessary to explain how we obtained the correspondence between Re 
and A in the experiments and 2, a in the theory. Part 1 contains the relations to 
recalculate the dimensional wave characteristics and Reynolds number from the 
dimensionless ones. For example 

The value of F here is not known beforehand. Therefore we cannot calculate Z ,  a 
from the experimentally measured values of Re, u/p, Y and h using only these 
equations. To carry out the comparison these relations were used as just two 
equations for the main system. The values of Re and A were fixed and those of Z ,  a 
were determined from calculations (as a rough initial approximation the values of Z ,  
a from these equations were obtained by use of the correlation F = 2). The 
dimensional phase velocity and the dimensional profile thickness were calculated 
after this problem had been solved. The values of a and Z corresponding to Re and 
h are given above to two decimal places. 

Figure 17 displays a comparison between the experimental and theoretical 
relationship between phase velocities and amplitudes for the second-family waves. 
Here the amplitude was determined from the maximum thickness and results are 
given in dimensional form. Both in the experiment (solid lines) and in the theory 
(points) the data marked by numbers 1-3 correspond to various waves on the surface 
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FIGURE 18. Comparison between the best-fit curve for dimensional velocities v5. dimensional 
amplitudes for the experimental data and the results calculated here. The parameters are given in 
the text. 
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of a water film (v = 1.03 x m2/s, u / p  = 72.9 x lop6 m3/s2) and of two water- 
glycerin films (v = 2.06 x lop6 m2/s, a l p  = 40.3 x m3/s2; v = 11.2 x lo-' m2/s, 
u / p  = 55.9 x lop6 m3/s2), respectively. The experimental results are shown by the 
best-fit solid lines in figure 17 and the data for waves with various wavelengths and 
at various Reynolds numbers are concentrated in experiments near the corresponding 
lines with 5-10 % dispersion. These results were obtained by Alekseenko (1979). 
Points 1-3 in figure 17 show the calculated results. These points correspond to 
various waves of the second family and were obtained at various values of 
dimensionless parameters a, 2 and then, by using the recalculation formulae (see 
Part l ) ,  the dimensional values of the phase velocity and amplitude for corresponding 
liquids were found. It is seen that the calculated values are close to the corresponding 
lines fitted to the experimental data. 

Nakoryakov, Pokusaev & Alekseenko (1976) give a simple correlation which 
generalizes the experimental data on the relationship between the dimensional phase 
velocities and dimensional amplitudes for various liquids and various strongly 
nonlinear waves : 

c = 1.98 ( g 2 / v ) b .  

Here a is the dimension amplitude determined by the maximum thickness. All 
experimental data are described by this formula to within 10%. Figure 18 shows a 
comparison between this curve and the calculated results for the second wave family 
for different liquids (solid circles, v = 0.9 x m2/s, u / p  = 72 x lo-' m3/s2; 
open circles v = 1.65 x m2/s, u / p  = 46.8 x m3/s2; solid triangles, 
v = 2.12 x m3/s2). It is seen that the accordance between 
the experiment and theory is quite good. We emphasize here once more that in the 
theory the second-family solutions were obtained at various values of a and 2 and 
the dimensional values of phase velocities and amplitudes were recalculated from 
dimensionless ones. 

Figure 19, taken from Radev (1985), also shows good agreement between our 
calculations (shown as an open circle) and experimental data (the other four symbols) 
from Radev (1985), Kapitza & Kapitza (1949) and Nakoryakov et al. (1979). The 
equation for fitting line is 

c = 2.6 (P~ALL~)-O.~ 

where c,  A ( A  = hmax-hmi,) are the dimensionless phase velocity and amplitude, 
k = 2nh,/h and A is the dimensional wavelength. 

m2/s, a l p  = 28.9 x 
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FIGURE 19. Wave velocity vs. ( F i h A ) .  Comparison of experiments (@, Radev 1985; 
-f Kapitza & Kapitza 1949; x , 0, Nakoryakov el al. 1976) and our theory (0). 
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FIQURE 20. A comparison between calculated and experimental data. The experimental data 
for different liquids fall within the dotted lines. The points denote the numerical results. 

The rather wide dispersion of some experimental points in figure 19 is connected 
with the fact that both fast strongly nonlinear waves and more slow sinusoidal waves 
of the first family are presented here. 

Figure 20 represent a comparison between the calculated and experimental data 
on the basis of the dependence of the rolling wave amplitude on the wavelength and 
Reynolds number. It was shown by Nakoryakov et al. (1976) that all experimental 
data for different liquids fall within the dotted lines in figure 20. The three symbols 
denote the numerical results for waves of the second type for three different liquids 
with the same properties as in figure 18. These data are also in good agreement with 
the experiment because they too fall within the dotted lines in figure 20. 

Thus the results presented in figures 14-20 allow us to conclude that the nonlinear 
long waves in experiments correspond to the theoretical second-family waves. 

Figure 21 shows the wavenumber stability zones for waves belonging to the second 
family (2-1 = 0.1) and the behaviour of the real parts of the first few eigenvalues of 
the stability problem (Q 1) .  As was the case for the waves belonging to the first family, 
here the stability zones on the (a, @-plane are mainly determined by the behaviour 
of two eigenvalues leaving zero when Q = 0. The difference is that now real parts of 
these eigenvalues oscillate near the axis Re ( y )  = 0 with varying a. As a result the 
second family has several stability zones. It should be noted also that the absolute 
value of the increment is lower for the waves belonging to the second family than 
that for the waves belonging to the first one. This, perhaps, explains why waves 
belonging to the second family dominate in the experiments. We note here that the 
plot for a = 0.26 illustrates the case when the solution is unstable with respect to 
disturbances with Q = 0 and there are eigenvalues at  Q --f 0 which are connected with 
the unstable modes. In figure 3 the solution with a = 0.26 is below curve 9. 
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FIGURE 21. Zones of wave regimes stable with respect to disturbances with various Q (shown 
hatched). The behaviour of the increments of several of the most dangerous disturbances vs. &. is 
also shown. Here 2 = 10. 

FIGURE 22. Results for the stability of wave regimes with respect to long-modulated disturbances 
(small &). Here 2 = 10. IfR, < 0 (line 1) then the disturbances are increasing and the value of the 
increment is - &. If R, > 0 then the stability is determined by values of Re (7:) and Re (7;) (lines 
2 and 3), the value of the increment is - &*. 

To investigate the stability of wave regimes with small a and increasing 2-1 one 
has to take higher and higher numbers of harmonics to present the basic solution and 
the possible disturbances. Therefore, in order to save computer time and taking into 
account that long-modulated disturbances with low &, as a rule, are the most 
dangerous, the analytic method described in 5 1 was used. 

The values R,, Re (yi), Re (7;) for waves belonging to the second family with 
2 = 5 are presented in figure 22 : lines 1,  2 and 3 respectively. 

If R, < 0 the solution q,, h, is unstable with respect to the long-modulated 
disturbances. For R, > 0 line 1 is dashed, since at  those points the stability is defined 
by Re (7:) and Re (7:). If Re (7:) and Re (7:) are greater than zero, the solution q,, 
h, is stable with respect to disturbances with small &, and if at  least one of these real 
parts is less than zero, it is unstable. It follows from figure 22 that there are several 
zones of waves that are stable with respect to such disturbances. 
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FIGURE 23. Zones of wave regimes stable with respect to long modulated disturbances 
(small Q ) ,  shown hatched. Lines 1 ,  2 are lines 9, 4 of figure 3. 

Figure 23 shows the results of an analytical investigation of waves belonging to the 
second family for different 2-'. The regions stable to long-modulated disturbances 
are hatched and adjacent to line 2 (line 9 in figure 3). Line 1 in figure 23 corresponds 
to line 4 in figure 3. 

5. Concluding remarks 
The results presented in this article demonstrate a good quantitative agreement 

between some calculated nonlinear regimes and the experimental data. In contrast 
to the waves belonging to the first family, these regimes are not a one-parameter 
family in the universally adopted sense. They form a multi-fold and multi-sheet 
surface on the (a,Z-')-plane (figure 3). The profiles of nonlinear waves lying on 
different sheets of this surface are essentially different (figure 7).  Owing to the 
presence of folds and high numbers of harmonics which are necessary to obtain these 
solutions the authors only succeeded in constructing the surface structure (figure 3) 
over a restricted region (ct,Z-l). Solutions lying on an upper sheet of the surface 
(figure 3, see $3) that are stable to disturbances of the same period as the period of 
basic wave may be found. They are conditionally called waves belonging to the 
second family. The stability of this family to arbitrary plane disturbances is greater 
than that of the first family. At low values of 2-1 the second-family waves have 
several zones of stable wavenumbers. With increasing 2-' the zones shift towards 
higher wavelength and become narrower. The instability increments for the waves of 
this family are lower by an order of magnitude than those for the first one. Therefore, 
in the experiments waves of this type are likely to be observed throughout the range 
of wavenumbers where they exist. 
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